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ABSTRACT

This paper reviews the state of the art in enumerative solution methods

for the traveling salesman problem (TSP). The introduction (Section 1)

discusses the main ingredients of branch and bound methods for the TSP.

Sections 2, 3 and 4 discuss classes of methods based on three different re-

laxations of the TSP: the assignment problem with the TSP cost function, the

1-tree problem with a Lagrangean objective function, and the assignment

problem with a Lagrangean objective function. Section 5 briefly reviews some

other relaxations of the TSP, while Section 6 discusses the performance of

some state of the art computer codes. Besides material from the literature,

the paper also includes the results and statistical analysis of some computa-

tional experiments designed for the purposes of this review.
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I. Introduction

Since the first actempc to solve traveling salesman problems by an enumer-

ative approach, apparently due to Eastman [1958], many such procedures have been

proposed. In a sense the TSP has served as a testing ground for the development

of solution methods for discrete optimization, in that many procedures and devices

were first developed for the TSP and then, after successful testing, extended to

more general integer programs. The term "branch and bound" itself was coined by

Little, Murty, Sweeney and Karel [1963] in conjunction with their TSP algoritim.

Enumerative (branch and bound, implicit enumeration) methods solve a dis-

crete optimization problem by breaking up its feasible set into successively

smaller subsets, calculating bounds on the objective function value over each

subset, and using them to discard certain subsets from further consideration.

The bounds are obtained by replacing the problem over a given subset with an easier

(relaxed) problem, such that the solution value of the latter bounds that of the

former. The procedure ends when each subset has either produced a feasible

solution, or was shown to contain no better solution than the one already in

hand. The best solution found during the procedure is a global optimum.

For any problem P, we denote by v(P) the value of (an optimal solution

to) P. The essential ingredients of any branch and bound procedure for a dis-

crete optimization problem P of the form minrf(x) Ix E S1 are

(i) a relaxation of P, i.e. a problem R of the form minfg(x) 1x .T

such that S;.T and for every x,vES, f(x) < f(y) implies g(x) < (y-.

(ii.) a branching or separation rule, i.e. a rule for breaking up the

feasible set S, of the current subproblem P. into subsets

q
Si ., SW such "hat S = S
iJul 'j
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(iii) a lower bounding procedure, i.e. a procedure for finding (or

approximating from below) v(Ri) for the relaxation R. of each

subproblem P.; and

(iv) a subproblem selection rule, i.e. a rule for choosing the next

subproblem to be processed.

Additional ingredients, not always present but always useful when present,

are

(v) an upper bounding procedure, i.e. a heuristic for finding feasible

solutions to P; and

(vi) a testing procedure, i.e., a procedure for using the logical implications

of the constraints and bounds to fix the values of some variables

(reduction, variable fixing) or to discard an entire subproblem

(dominance tests).

For more information on enumerative methods in integer programming see,

for instance, Chapter 4 of Garfinkel and Nemhauser [1972], and/or the surveys

by Balas [1975], Balas and Guignard [1979], Beale [1979], Speilberg [1979].

Since by far the most important ingredient is (i), we will classify the

branch and bound procedures for the TSP according to the relaxation that they

use.

The integer programming formulation of the TSP that we will refer to when

discussing the various solution methods is defined on a complete directed graph

G = (V,A) on n nodes, with node set V = LI,...,n}, arc set A = £(i,j)li,j ,...,n),

and nonnegative costs c j associated with the arcs. The fact that G is

Ii
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complete involves no restriction, since arcs that one wishes to ignore can be

assigned the cost ci. = . in all cases cii = =, V iEV. The TSP can be

formulated, following Dantzig, Fulkerson and Johnson [1954], as the problem

(1) rin C .x.iEVj-V 1j 11

s.t.

Z x.. = I , i =V
jEV C'

(2)
Z x.. = 1 , j-v
iV . j 1

i ES jES

(4) x = 0 or 1, i,jEV.

where x . = I if arc (i,j) is in the solution, xij = 0 otherwise.

The subtour elimination inequalities (3) can also be written as

(5) x V S ' V, S4
iESjEV"S ij - , v, s

A very important special case is the symmetric TSP, in which c ij cji ,

Vi,j . The symmetric TSP can be defined on a complete undirected graph G -(V,E)

on n nodes, with node set V, edge set E, and arbitrary costs cij. It can

be stated as

(6) min c - c.
i V cijij

S.:.

(7) .. - x = EV
ij vj<i -- j- i

-Ahat
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(8) Is!ES~ s-1, S V, SAOiESjESx ij-

pi

(9 Xij = 0 or 1, i,jEV , j >i

where the subtour elimination inequalities (8) can also be written as

(!0) Z Z x.. + x.. >2 VS V, S4
iESjEV\S 'i iEV'\SjES 'i-i

j>i j>i

Next we outline two versions of a branch and bound procedure for the TSP.

Prior to using any of these versions, a relaxation R of the TSP must be

chosen. Both versions carry at all times a list of active subproblems. They

differ in that version I solves a (relaxed) subproblem Rk only when node k is

selected and taken off the list, while version 2 solves each (relaxed) sub-

problem as soon as it is created, i.e. before it is placed on the list.

Although the branch and bound procedures used in practice differ among them-

selves in many details, nevertheless all of them can be viewed as variants of

one of these two versions.

Branch and bound method for the TSP

Version 1

1. (Initialization). Put TSP on the list (of active subproblems). Initia-

lize the upper bound at U = m, and go to 2.

2. (Subproblem selection). If the list is empty, stop: the tour associated

with U is optimal (or, if U = m, TSP has no solution). Otherwise choose

a subproblem TSPi according to the subproblem selection rule, remove TSP1

from the list, and go to 3.
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3. (Lower bounding). Solve the relaxation R. of TSP, or bound v(R.) from1 1

below, and let L be the value obtained.1

if L. > U, return to 2.

If Li < U and the solution defines a tour for TSP, store it in place

of the previous best tour, set U - Li, and go to 5.

If L. < U and the solution does not define a tour, go to 4.

4. (Upper bounding: optional). Use a heuristic to find a tour in TSP. If

a better tour is found than the current best, store it in place of the

latter and update U. Go to 5.

5. (Reduction: optional). Remove from the graph of TSP, all the arcs whose
3

inclusion in a tour would raise its value above U, and go to 6.

6. (Branching). Apply the branching rule to TSPi, i.e. generate new

subproblems TSP 1 ,..., TSPi., place them on the list, and go to 2.

Version 2

1. (Initialization). Like in version 1, but solve R before putting TSP

on the list.

2. (Subproblem selection). Same as in version 1.

3. (Upper bounding: optional). Same as step 4 of version 1, with "go to 5"

replaceed by "go to 4."

4. (Reduction: optional). Same as step 5 of version 1, with "go to 6" replaced

by "to go 5."

5. (Branching). Use the branching rule to define the set of subproblems

TSPil,...,TSPiq to be generated from the current subproblem TSPi,

and go to 6.
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. KL,:wer bounding). If all the subproblems to be generated from TSP.

according to the branching rule have already been generated, 7o to 2.

Otherwise generate the next subproblem TSPi. defined by the branching

rule, solve the relaxation Rij of TSPij or bound v(R ij) from below,

and let L.. be the value obtained.

If L ij _ U, return to 6.

If Lij < U and the solution defines a tour for TSP, store it in place

of the previous best tour, set U - Lij, and go to 6.

If L - U and the solution does not define a tour, place TSP. . on the list

and return to .

in both versions, the procedure can be represented by a rooted tree (search

or branch and bound :ree) whose nodes correspond to the subproblems generated,

with the root node corresponding to the original problem, and the successor nodes

of a given node i associated with TSP i corresponding to the subproblems

TSP41,.... TS defined by the branching rule.
iq

it is easy to see that under very mild assumptions on the branching rule

and the relaxation used, both versions of the above procedure are finite (see

Exercise 1).

Next we discuss various specializations of the procedure outlined above,

classified according to the relaxation that they use. When assessing and

ccmparing the various relaxations, one should keep in mind that a "good" re-

laxation is one that (i) gives a strong lower bound, i.e. yields a small

difference v(TSP) - v(R) ; and (ii) is easy to solve. Naturally, these are

of:en c.nflicting -oals, and in such cases one has to weigh the tradeoffs.

S ,



_ .laxa . on I :he A- siZen: pobl I e, t the :SP Cost Funcic..

:he most straiahtforward relaxation of the TSP, n itial h is

I one to have been used, is uhe problem obtained from the integer progranming

formulation (1), (2), (3), (4) by removing the constraints (3), i.e. the

assignment problem (AP) with the same cost function as TSP. t. was used,

*among others, by Eastman [19581, Little, Murty, Sweeney a 'arel [19631,

Shapiro [19661, Bellmore and Malone [19711, Smith, Srini mn and Thompson

t19771, Carpaneto and Toth [19801.

An assignment (i.e., a solution to AP) is a union of directed cycles,

hence either a tour, or a collection of subtours. There are nI distinct

assignm=ents, of which (n-I)! are tours. Thus on the average one in every n

assignments is a tour. Furthermore, in the current context only those assign-

ments are of interest that contain no diagonal elements (i.e., satisfy x ii

0, il*,n, and their numaber is n!/e rounded to the nearest integer,

i.e. Ln!/"e + 1/21 (see, for example, Hall (19671, p. 10). Thus on the average o'ne

in evr / daoa-free" assignments is a tour. This relatively high fre-

quency of tours among assignments suggests that v(AP) is likely to be a pretty

strong bound on v(TSP), and computational experience with AP-based solution

methods supports such a view. To test how good this bound actually is for

randomly generated problems, we performed the following experiment. We gen-

erated 400 problems with 50 < n < 250 with the costs independently drswn from a

uniform distribution of the integers over the inter-,als [1,100] and [1,10001,

and szl'7ed both A? and TSP. We found that on the average v(AP) was 99.271 of

*:WS?. 7-r:hermore, we found the bound to improve with problem size, in that

:r:e orobLems -.ith 50 < n < 150 and 150 < n < 250 the outcomes were 98.8"

ad .3, rz-spectively.

f ~~~~- * . .1 : ..- "



A? can be solved by the Hungarian method (Kuhn -i5: for a more recent

:reacment, see Christofides [197 -1 or Lawier [197 . in at most s3 teps

-:e assignmenc roblems A?. to be solved at every- node of the search tree differ1

from the initial assig-nment problem A? in that some arcs are excluded (forbidden)

from, while other arcs are included (forced) into the solution. These modifi-

cations do not present any difficulty. Since the Hungarian method provides at

every iteration a lower bound onv(Ap), the process of solving a subproblem can

be stopped whenever the lower bound meets the upper bound U. More importantly,

in the typical case (see the branching rules below), the assignment problem A?

to be solved at node j of the search tree differs from the problem APi solved

at the parent node i only in that a certain arc belonging to the opti-al solution

of A? . is excluded from the solution of APj, and possibly some other arcs are

required to maintain the same position (in or out) with resrect to the solution

of AP., :hat they have with respect to that of AP.. Whenever this is the case,J

:he problem AP. can be solved by the Hungarian method starting from the optimal2

solution of the problem at the parent node (or at a brother node), in at most 0(n )

steos (see Exercise 2 or 3ellmore and Malone [19711). For an efficient implementa-

tation of this version of the Hungarian method, which uses on the average consider-

ably less than O(n-) steps, see Carpaneto and Toth [1980]. The primal simplex

method for the assignment problem has also been used in a parametric version

to solve efficiently this sequence of interrelated assignment problems by

-mirn, Srini'vasan and :-hcmpson [1977].

The lower bound v(AP) can be slightly improved by addition of a penalty.

:his can- be calculated as the minimal increase in the objective function

caused =ither by a first simplex pivot that eliminates some arc from the

!i-In. .: CV a firs: iteration of the Hungarian method that accomrlishes te sa-e

- the arc to be included in the solution b- the oti-o: can oe
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-2szricced :o a cucset defined by some subtour of the A? solution. CmTuCa-

:i:nal experience indicates, however, that the impact of such a penalty tends

to decrease with problem size and is negligible for anything but small problems.

in the computational experiment involving the 400 randomly generated problems

that we ran, the addition of a penalty to v(AP) raised the value of the lower

bound on the average by 0.03%, from 99.2% to 99.23% of v(TSP).

Branching rules

Several branching rules have been used in conjunction with the AP relaxa-

ation of the TSP. In assessing the advantages and disadvantages of these rules

one should keep in mind that the ultimate goal is to solve the TSP by solving

as few subproblems as possible. Thus a "good" branching rule is one that

a) generates few successors of a node of the search tree, and (b) generates

strongly constrained subproblems, i.e. excludes many solutions from each

subproblem. Again, these criteria are usually conflicting and the merits of

the various rules depend on the tradeoffs.

We will discuss the various branching rules in terms of sets of arcs

excluded (Ek) from, and included (1k) into the solution of subproblem

k. In terms of the variables xi., the interpretation of these sets is that

subproblem k is defined by the conditions

f0, (ij) E E.
i iX . = < K

.J ( ,  (i,.) 4 k

in addition to (1), (2), (3), (4). Thus the relaxation of subproblem k is

4iven by (11) in addition to (1), (2), (4). We abbreviate Branching Rule

-V. - -.
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BR 1. (Little, Murty, Sweeney and Karel [19631). Given the current re-

laxed subproblem APk and its reduced costs j.. = c.. - u. - v., where u.

and v. are optimal dual variables, for every arc (i,j) such that F-.. = 0

define the penalty
(

P = min Cih hEV\jI + min Fh • hEVl fi>

and choose (r,s) E A such that

= max'..'3 iPrs = ax "Pij : c-ij 0 J .

Then generate two successors of node k, nodes k + I and k + 2, by

defining

Ek+l Ek j,(r,s)2 , k+l = k

and

Ek+ 2 = Ek Ik+2 = Ik U((r,s)•

This rule does not use the special structure of the TSP (indeed, it applies

to any integer program), and has the disadvantage that it leaves the

optimal solution to APk feasible for APk+ 2.

The following rules are baseu on disjunctions derived from the subtour

elimination inequalities (3) or (5).

BR 2. (Eastman [1958], Shapiro [19661). Let x be the optimal solution to

the current relaxed subproblem APk, and let As = (ii2 .. , (i,i 1 ) be the

arc set of a minimum cardinality subtour of xk  involving the node set

S = ti )....,iO. Constraint (3) for S implies the inequality

(3" (1,j)E Sx I ! - 1

(i,j)EAs -

which in turn implies the disjunction

(12) i = 0 '.. t 1 =0

*ii 1
12 t



Generate successors .f node k, defined by

=E (i ,j '
(13) r=I (13 I k+r _-r=k,,,

with it+ l = i 1
k

Now x is clearly infeasible for all APk+r, r = l,...,t, and the choice

of a shortest subtour for branching keeps the number of successor nodes small.

However, the disjunction (12) does not define a partition of the feasible set

of AP,, and thus different successors of APk may have solutions in ccr~non. This

shortcoming is remedied by :he next rule, which differS from BR 2 only in that

it strengthens the disjunction (12) to one that defines a -ar:i-iion.

BR 3. (Murty [19681, Bellmore-Malone [19711, Smith, Srinivasan and

Thompson [19771). The disjunction (12) can be strengthened to

(14) (x = 0) V(X. 1, xi3 = 0) V.../(x i  ... = : . 1, x.i =

12 2 3 1 2 t-l~tt1

and accordingly (13) can be replaced by

" r rit r+l)

(15) r

k+ r = k  i irf.4lir

-i:h i =i

sliihtly different version of BR 3 (as well as of BR 2) is to replace

Ao a minimum-cardinali y subtour with that of a subtour :ith o

t I .... "".. . ,III I = =
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-. lr~:mtm, number of free edges (i.e. edges of E. I ). :his rule -s used :

Carpar.eco and 7jth [1180].

k
BR 4. (Bellmore and Malone [1971]). Let X and S be as before.

Constraint (5) implies the disjunction

(16) (X 0, jES) V(x. 0, jES) v...v'(xi - 0, jES).

Generate t successors of node k, defined by

Ek~r = E, ,. (i r,) : jES)-

(17) r = I, ... t

~r i1-

Like in the case of BR 2, Br 4 makes x infeasible for all successor

problems of AP , but again (16) does not partition the feasible set of APk.

rhis is remedied by the next rule, which differs from BR 4 only in that it

defines a partiticn.

BR 5. (Garfinkel [19731). The disjunction (16) can be strengthened to

(18) (xi = 0, jES) V(x. = 0, jE VS; xi. 0, jES) v...

V(.ir j = 0, jEv'S,r = l,...,t-l; x =j -0, JES)

and accordingly (17) can be replaced by

- -r 4 E (r J) j ES} (i ( j): l, ., -,JV S

il9)

i. = /
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The two rules BR 2 and BR 4 (or their strengthened variants, BR 3 and

BR 5), based on the subtour-elimination constraints (3/) and (5), respectively,

generate the same number of successors of a given node k. However, the rule

based on inequality (5) generates more tightly constrained subproblems, i.e.,

excludes a greater number of assignments from the feasible set of each successor

problem, than the rule based on inequality (3'). Indeed, with JS = k, we have

Theorem 1. (Bellmore and Malone [1971]). Each inequality (3') eliminates

t(n-k)!/e + 1/21 diagonal-free assignments, whereas each inequality (5) eliminates

j(n-k)!/e + 1/21 lk!/e + 1/21 diagonal-free assignments.

Proof. Each inequality (3') eliminates those diagonal-free assignments

that contain the subtour with arc set AS. There are as many such assignments

as there are diagonal-free assignments in the complete graph defined on node

set VS, and the number of these is (n-k)!/e rounded to the nearest integer, i.e.,

[(n-k)!/e + 1/21 (see section 2).

On the other hand, each inequality (5) eliminates those diagonal-free

assignments consisting of the union of two such assignments, one in the complete

graph defined on S, the other in the complete graph defined on V\S. Since the

number of the latter is 1(n-k)!/e + 1/21 and that of the former is k!e + 1/21,

the number of diagonal-free assignments eliminated by each inequality (5) is as

stated in the theorem.'i

Nevertheless, both Smith, Srinivasan and Thompson [19771 and Carpaneto and

Toth [1980] found their respective implementations of BR 3 more efficient than

BR 4 or BR 5, both in terms of total computing time and number of nodes generated.

We have no good explanation for this.



!-her features

7he subproblem selection rule used by many branch and bound algorithms is :he

:ne known as "depth first" or LIFO (last in first out). It amounts to choosing

one of the nodes generated at the last branching step (in order, for instance,

of nondecreasing penalties, like in Smith, Srinivasan and Thompson

[19771); and when no more such nodes exist, backtracking to the parent node

and applying the same rule to its brother nodes. This rule has the advantage

of modest storage requirements and easy bookkeeping. Its disadvantage is that

possible erroneous decisions (with respect to arc exclusion or inclusion) made

early in the procedure cannot be corrected until late in the procedure.

The alternative extreme is known as the "breadth first" rule, which

amounts to always choosing the node with the best lower bound. This rule has

the desirable feature of keeping the size of the search tree as small as possible,

(see Exercise 3), but on the other hand requires considerable storage space. In

order to keep simple the passage from one subproblem to the next one, this rule

must be embedded in a procedure patterned after version 2 of the outline in the

introduction, which solves each assignment problem as soon as the corresponding node

is generated, and places on the list only those subproblems TSP.. with L.. < U.

The procedure of Carpaneto and Toth [1980] uses this rule, and it chooses the

subproblems to be processed (successors of a given node) in the order defined

by the arc adjacencies in the subtour that serves as a basis for the branching.

As mentioned earlier, the high frequency of tours among assigrunents makes

A? a relatively strong relaxation of TSP, which in the case of random (asynmetric)

costs provides an excellent lower bound on v(TSP). However, in the case of

:he syv..eric TSP, the bound given by the optimal AP solution is substantially

' An exoeriment that: we ran on 140 problems with 40 < n < 100 and with

.-m.etric costs indeoendentlv drawn from a uniform distribution of the inzecers

a Y - -
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jn :he interval [1, 1000], showed v(AP) to be on the average 82 of vETSP),

hile ~-he addition of a penalty raised the bound to 857. The explanation of :he

relative weakness of this bound is pretty straightforward: in the symmetric case,

there is a tendency towards a certain symmetry also in the solution, to the effect

that if xi. = 1, then (since c.. c.), one tends to have x.. I too;

and thus the optimal AP solution usually contains a lot of subtours of length 2

irrespective of the size of n . Thus as a rule, a much larger number of

subtours has to be eliminated before finding an optimal tour in the symmetric

case than in the asymmetric one. This makes the AP a poor relaxation for

the symmetric TSP.

3. Relaxation II: The 1-Tree Problem with Lagrangean Objective Function

This relaxation was successfully used for the symmetric TSP first by Held

and Karp [1970, 1971] and Christofides [19701, and subsequently by Helbig Hansen

and Krarup [1974', Smith and Thompson [19771, Volgenant and Jonker [19821.

Consider the symmetric TSP and the undirected (complete) graph G = RT,E)

associated with it. The problem of finding a connected spanning subgraph H

of G with n edges, that minimizes the cost function (6), is obviously a

relaxation of the symetric TSP. Such a subgraph H consists of a spanning

tree of G, plus an extra edge. We may further restrict H to the class .'

of subgraphs of the above type in which some arbitrary node of G, say node 1,

has degree 2 and is contained in the unique cycle of H. For lack of a

better term, the subgraphs of this class :' are called 1-trees. To see that

findinz a 1-tree that minimizes (6) is a relaxation of the TSP, it suffices to

:ea'i=e :hat the ccnst:raint set defining the family is (9) and
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20) Zx.. + > 1, V S -, S*O
i SjEV' S ' j  i-V'Sj S 

J>i j>i

- x..

i V/j>i ]

(22) x . = 2

jEV

Here (20) is a weakening of (10), (21) is the sum of all equations (7)

divided by two, and (22) is the first equation (7).

The minimum-cost i-tree problem is easily seen to be eecomposable into

two independent problems:

(a) to find a minimum-cost spanning tree in G - rl:; and

( ) to find two smallest-cost edges among those incident in G with node 1.

The n-2 edges of the spanning tree found under (a), together with the

2 edges found under ($), form a minimum-cost 1-tree in G.

Solving problem (P) requires 0(n) comparisons, whereas problem (a)

can be efficiently solved by the algorithms of Dijkstra [1959] or Prim [19571,

2of complexity 0(n ), or by the algorithm of Kruskal [1956], of complexity

0(IE log !IE). Since the log !E! in the last expression comes from sorting

the edges, a sequence of subproblems that requires only minor resorting of the

edges between two members of the sequence can be more efficiently solved by

Kruskal's procedure than by the other two.

The number of 1-trees in the complete undirected graph G on n nodes can be

calculated as follows: the number of distinct spanning trees in G - I is
n-I

(n-I' -  (Calley's formula), and from each spanning tree one can get ( 2 distinct

-:rees by insering two edges joining node 1 to the tree. Thus the number of

/.
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I-trees in G is (n-2'(n-l), which is much higher than the number of solu-

tions to AP. Since G has (n-l! tours, on the average the number of tours among

the 1-trees of a complete undirected graph is one in every T-(n-2)(n-l) ,(n-2)!,

and hence the minimum-cost 1-tree problem with the same objective function as

the TSP is a rather weak relaxation of the TSP. in the above mentioned computa-

tional experiment on 140 randomly generated symnetric problems, we also solved

the corresponding 1-tree problems and found the value of an optimal 1-tree to be

on the average only 63% of v(TSP). However, this relaxation can be considerably

strengthened by taking the equations (7) into the objective function in a Lagrangean

fashion, and then maximizing the Lagrangean as a function of the multipliers.

The problem

(23) L(%) = rin c..x.. + .(x.. + x. 2 )
xec ((, imVj>i IJ 1J ie" I j<i ji P~i 13

= min (c + X+ X .)xij - 2 X.3-
x= 12 iVj>i i 3 -E J X i__V

where ' is any n-vector and X(,) is the set of incidence vectors of 1-trees in

G, i.e., the set defined by (9), (20), (21), (22), is a La~rangean relaxation

of the TSP. From the last expression in (23) and the fact that X(,7 contains

all tours, it is easy to see that for any X, L(%) < v(TSP). (For surveys of

Lagrangean relaxation in a more general context see Geoffrion [19741, Fisher

[!-9811, Shapiro (19791.) The strongest Lagrangean relaxation is obviously given

by \ = ) such that

max LM

Pr:-lem -A) is sometimes called a Lagrangean dual of the TSP.
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Now (24) is a much stronger relaxation than the 1-tree problem

with the TSP cost function. Indeed, computational experience with randomly

generated problems has produced on the average values of L(X) of about 99%

of V(TSP) according to Christofides [1979] (p. 134), and of about 99.7%

of v(TSP) according to Volgenant and Jonker [1982].

However, solving (24) is a lot more difficult than solving a 1-tree

problem. The objective function of (24), i.e. the function L(X) of (23), is

piecewise linear and concave in X. Thus L(X) is not everywhere differentiable.

Held and Karp [19711, who first used (24) as a relaxation of the TSP, have tried

several methods, and found that an iterative procedure akin to the relaxation method

of Agmon [1954] and Motzkin and Schoenberg [1954) was the best suited approach

for this type of problem. The method, which turned out to have been theoret-

ically studied in the Soviet literature (see Polyak 119671 and others)

became the object of extensive investigations in the Western literature under

the name of subgradient optimization, as a result of its successful use

by Held and Karp in conjunction with the TSP (for surveys of subgradient opti-

mization in a more general context see Held, Wolfe and Crowder [1974],

Sandi [19791).

The subgradient optimization method for solving (24) starts with some

arbitrary X - (say the zero vector) and at iteration k updates X kas

k k kfollows. Find L(% ), i.e. solve problem (23) for X = X . Let H(X ) be

the optimal I-tree found. If H(% ) is a tour, or if v(H(X k)) 2 U,

stop. Otherwise, for iEV, let d be the degree of node i in H(%).

Thn the n-vector with components d k 2, 1EV, is a subgrdient of L(%) at

(see Exercise 4). Set
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5) ,k - 2), "

where t is the "step length" defined by

( 6 
k  = a(U - L(%k ) / - (d k  _-72) 2

with 0 < a < 2. Then set k -k~l and repeat the procedure.

It can be shown (see any of the surveys mentioned above) that the method
convrge i t k  

k =n iat
converges if -t= t and lim t 0. These conditions are satisfied if

k=l k- =
one starts with a = 2 and periodically reduces 7 by some factor.

Examle 1.

Consider the 8-city svnmetric TSP whose graph is shown in Fig. i (only arcs

with finite cost are present). Initially U = 25, a = 2, 0 0 for i

: ~Fig. 1.. Initial graph G -- (= E
-.
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The optimal I-tree, shown in heavy lines in Fig. 1, has a weight of L( . = 21.

At iteration 0 we have:

0
d = (2, 2, 4, 1, 1, 3, 2, 1);

t = 2(25-21)/8 = 1;

.11

&, (0, 0, 2, -1, -1, 1, 0, -1).

Th upae ar cot ck +xj) and the corresponding optimal 1-tree,

having a weight of L(% 1 24, are shown in Fig. 2.

6

Fig. 2. Updated graph G 2(V,E

We have d - 2 for i = I ,8: thus a tour has been found and the procedure stops.i.' '
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Held and Karp [19711 pointed out that if o is taken to be, instead of

0, the vector defined by

%0 = -(u. + vi4"2 , iV

where (u, v) is an optimal solution to the dual of the assignment problem yith

costs c'. = c.i, x i,j, then one always has v(H('t . _ v(AP). Indeed, for this

choice of \o one has from (23)

LG. °) = min (c. . + 4- 0 )x. . 2
xEX(.?) \jV jil 1 11 PciV

mml[ ~ (c.ij - u. - v.) -" (c.. - u. - v.]4- -(u. v )i=min (C u . C. u(

x.X(;-) iZV j i 12 1 2 21 J 1 i V '

v(AP),

since v(AP) = (ui + vi) and c - u - v. > 0, i,j.
jE ij i j i J

This kind of initialization requires of course that one solve AP prior to

addressing problem (24).

Helbig Hansen and Krarup [19741 and Smith and Thompson [1977] distinguish be-

tween the application of the subgradient procedure at the root node of the

search tree and at subsequent nodes, by using different starting vectors X °

and different stopping rules.

Volgenant and Jonker [19821 use an updating formula for Xk, and an ex-

pression for t k , different from (25) and (26), respectively. Namely, they
k

take t to be a positive scalar decreasing according to a series with a

constant second order difference, i.e.

k+l k k-l(27) t - 2t + t = constant,

- - " .. ..
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.k kk k k-

. 0.6t (d -2) 4- O.ct (d. -2' otherwise
4- i

It should be mentioned that none of the versions of this subgradient optimization

method can be guaranteed to solve (24) in polynomial time with a prespecified

degree of accuracy. However, the stopping rules are such that after a certain

num.ber of iterations the procedure terminates with an approximation to an

os-ima! ., which gives a (usually good) lower bound on L(X).

3ranchi: rules

(Held and Karp (19711). At node k, let the free edges of the current

1-tree i.e. chose in E\EkIk) be ordered according to nonincreasing penalties,

and let the first q elements of this ordered set be j )2 .... 2 iq).,

,.here o will be specified below. Define q new subproblems by

Ik ' h
)

tk+r = k (ih,i : h = l,...,r- r =.

(29) %+r --E '.)(i r) ,.,-

E ,)i , j) Ik_& i =p or j

Here p V is such that 'k  contains at most one edge incident with

-'h, hiLa contains to such edges; and q is the smallest subscript

- dze in J for which a node with the properties of D exists.

-his rule oar-itins the feasible set, and makes the current I-tree

Li.r each of the new subproblems generated, but the number f

-. uo-i- e.ns i :f- n larger than neces-sa:.
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7R ., ,S~ith and Thcmpson [1977]). Choose a node -'--se dearee in :-Q

,rr"nt i-tree is not 2, and a maximum-cost e-ge (i,j) among chose incidenc

with the chosen node. Then generate two new subproblems defined by

-k-l

<30)

= Ek I k+2 Ik J(i ' j)

This rule generates only two successors of each node k of the search

tree, but the minimum 1-tree in subproblem k remains feasible for subproblem

2

R S. (Volgenant and Jonker [19821). Choose a node p whose degree in

the current 1-tree exceeds 2. Such a node is incident with at least two free

edges, say (ilJl) and (i2,J,) (otherwise 'k contains two edges incident

with p, hence the remaining edges incident with p belong to or should belong

E, .enerate three new subproblems defined by

-k+1 k Ik + l = Ik L(il'j) , (i2J 2 )

(31) Ek+2 = Ek di(i 2 ,J2 ) ,

k .' ( , I"k+2  = k  1,.{(lJ )

Ek+ 3  Ek Uf(i1 ,J1 ) ,k+3 -

1- n is incident with an edge in k, then node k+l is not generated.

This rule also partitions the feasible set and makes the I-tree at node k

infreasibe for each of the successor nodes, uhile the number of successors cz

-~- ,.i i-- rcst 3.
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Other features

Held and Karp [19711 and Smith and Thompson [1977] use a Jepth first sub-

problem selection rule, while Volgenant and Jonker [1982] 'Lave implemented both

a depth first and a breadth first rule, with computational results that indi-

cate a slight advantage for the depth first rule (in their implementation).

Extension to the asymmetric TSP

The basic ideas of the 1-tree relaxation of the symmetric TSP ca'ry

over to the asymmetric case (Held and Karp [1970]), in that the 1-tree in

an undirected graph can be replaced by a 1-arborescence in the directed graph

G = (V,A), defined as an arborescence (directed tree) rooted at node 1,

plus an arc (i,l) joining some node iC\V'l3 to node 1. The constraints

defining a 1-arborescence, namely (4) and

(32) Z x. > 1 V S V : [IJES
iESjEV\S '-

(33) c Z x.. =n
iEVjEV '-

(34) Z x 1

i EV il

are easily seen to be a relaxation of the constraint set (2), (4), (5) of

the TSP.

The problem of finding a minimum-cost 1-arborescence can again be de-

composed into two independent problems, namely (a) finding a minimum-cost

arborescence in G rooted at node 1, and ($) finding a ainimum-cost arc

(i,l) in G. Problem (a) can be solved by the polynomial time algorithms

of Edmonds [1967] or Fulkerson [1974], or by the 0(n 2 )-time algorithm of

Tarjan [1977].



To Dbtain :he Lagrangean version of :he l-arborescence relaxation, one

fr.rns -he funccion

m35) = + '". -x - 1)xC=X(C) iz-Vj 7l i 1_V i i-VT

=min - + %) i - Z . ,
xec(C) iEVjEV iE V

where X(C) is the set of incidence vectors of C, the family of 1-arbo-

rescences in G. Again, the strongest lower bound on v(TSP) is of course

given by X \ such that

(36) L = max LO.)

an' subgradient optimization can be used to solve problem (36). However,

computational experience with this relaxation (see Smith [1975]) shows it to

be inferior (for asynmmetric problems) to the AP relaxation, even when the

latter uses the original objective function of the TSP.

4. Relaxation III: the Assignment Problem with Lagrangean Objective Function

This relaxation was used for the asymmetric TSP by Balas and Christofides

[1981]. It is a considerable strengthening of the relaxation consisting

of the A? with the original cost function, involving a significant computa-

tional effort, which however seems amply justified by the computational

results -hat show this approach to be the fastest currently available method

tor this class of ?roblems.

Consider the asymmetric TSP defined on the complete directed graph G = (°,A),

ir .he intezer programming formulation (1), (2), (4), plus the subtour-eliminati:n

:ons'raints. :he latter can be written either as (3) or as 3), but f:fr reasons
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to be explained later, w;e include both (3 and (3), as well as some :ositive

linear corbinatizns of such inequalities, and w7rite the resuling set of subtour-

elimination inequalities in the generic form

(37) a . X . > a t  t E T
i j rT j E v J J - 0

Thus our integer programming formulation of the TSP consists of (1), (2), (4

and (37). To construct a Lagrangean relaxation of TSP, we denote by X the feasible

set of AP, and associate a multiplier wt, tzT, with every inequality in the system

(37). We then have

(:38) L'(w) = n _ c. .x. - I w ( Z 2 a . .x. - ax_ i_.r _.,  j 13 i =V i
_,t E T t i V

X•. ' __t

t -. tET
min 2 - (c.. - .w a..)x.. + w wa °:= i~vj /iJ tit J 1J =.to'

"ere ,7 = K, Clearl--, the strongest such relaxation is given by w = w such
-'a

that

(39) L(w) = max L(w)

The Lagrangean dual (39) of the TSP could be solved by subgradient optimi-

zation, like in the case of the 1-tree relaxation of the symmetric TSP. However,

in this case the vector w of multipliers has an exponential number of c¢mpo-

nents, and until an efficient way is found to identify the components that need

t, be changed at every iteration, such a procedure seems computationally

expe nsive. 3alas and Christofides [1981] therefore replace (39) by the

"ras-ric-ed' La.rangean dual

-0 max -.j),

":h4 -e
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S w > 0 and there exists u,v17, n  such that-I

v. - " ¢ai c. if "., = 0 I.

I-i tT : < ..

and x is the optimal solution found for the AP.

In other words, (40) restricts the multipliers wt to values that,

together with appropriate values u. , vi , form a feasible solution to the

dual of the linear program given by (1), (2), (37) and xij _ 0 , i,jV.

This may cause the value of (-.0) to be less than chat of (39), but it

leaves the optimal solution x to AP, also optimal for the objective function

(38). Thus (LJO) can be sd-/ed without changing C. T4hile n0 good

method is known for the exact solution of (40), Balas and Christofides [19311

give a polynomially bounded sequential noniterative approximation procedure,

which yields multipliers w such that L(w) typically comes close to v(TSP):

for randomly generated asymmetric TSP's, L(w) was found to be on the average

99.5', of v(TSP) (Christofides [19791, p. 139-140).

The orocedure starts by solving AP for the costs cij, = i,j, and taking ui, v.

to be the components of the optimal solution to the dual of A?. It then assigns

values to the multipliers w t sequentially, without changing the values assigned

earlier. We say that an inequality (37) admits a positive multiplier, if there

exists a wd > 0 which, together with the multipliers already chosen, satisfies

t.he cons:raints of W. At any stage, v(TSP) is bounded from below by

( ', r U . + Z V . + w ta 0

V jEV tZT

i nce ", , 7) is a feasible solution to the dual of the linear program .e:inec

(37: and xi ; 0, ' iA.

- .i
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The bounding procedure successively identifies valid inequalities that

'i) are violated by the AP solution x , and

(ii) admit a positive multiplier.

Such inequalities are included into L(w) in the order in which they

are found, with the largest possible multiplier w t . The inclusion of each

new inequality strengthens the lower bound L(w). We denote by Ei. the re-

duced costs defined by the optimal dual variables u i , v. and the multipliers
t

w t , I.e.,cij=c.. - u. - V4 w r at
tj i 1 j t tij*

At any given stage, the admissible graph Go = (V,Ao) is the spanning

subgraph of G containing those arcs with zero reduced cost, i.e.

- (i,j) - Au i - v + w a = c.
tIT tJ 1

where T is the index set of the inequalities included so far in L(w). The

inclusion of each new inequality into the Lagrangean function adds at least one

new arc to the set A . Furthermore, as long as G is not strongly connected, the
0 0

procedure is guaranteed to find a valid inequality satisfying (i) and (ii). Inus

the number of arcs in A steadily grows; and when no more inequalities can be
0

found that satisfy (i) and (ii), G is strongly connected. Finally, if at some
0

point G becomes Hamiltonian and a tour H is found in G whose incidence0 0

vector satisfies (37) with equality for all tET such that wt > 0, then H is an

optimal solution to TSP (see Exercise 5).

Three types of inequalities, indexed by T1 , T2 and T3 , respectively,

are used in three noniterative bounding procedures applied in sequence. We

-iill denote the three components of w corresponding to these three inequality

oLasses, = K'") o_ , - ( and v respectively."i iz 1  • " i T '-'3

A !---3
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3cundin2 vrocedure I

This procedure uses the inecualities (5) satisfying conditions (i) and (ii).

_or any S--V, the set of arcs (S,V S) = (i,j) A'i-S, jzV S; is called a directed

cutset. The inequalities (5) corresponding to the node sets St, tzT, can be

represented in terms of the directed cutsets Kt = (St, V St) , as

x.. >1, t = T(i, j)E-K ' - 1

At any stage of the procedure, the inequality corresponding to cutsec

Kt is easily seen to satisfy conditions (i) and (ii) if and only if

(43) K. ' A =

To find a cutset K satisfying (43), one chooses a node i E V and

forms its reachable set R(i) = jEVjthere is a directed path from i to 41 in

Go. if R(i) = V, there is no cutset K. with i E S satisfying (43), so one chooses
0 6 t

another node. if R(i) * V for some i E 7, then K. = (R(i), V R(i)) satisfies (43),

and the largest value that one can assign to the corresponding multiplier .t with-

out violating the constraints of W is -- min c . Thus the inequality
(ij)EK ij

t

(42) corresponding to K t is included in L(w) by setting the reduced costs to

c ij - c ij (i'j)EKt, ¢ij - Cij otherwise. This adds to A all arcs for

which the minimum in the definition of kt is attained. The search is then started

again for a new cutset; and the procedure ends when the reachable set of every

node is V. At that stage G is strongly connected, and K'A 0 0 for all0 0

directed cutsets K in G. Also, from (41) and the fact that a t = 1, = t'TI it
0

f..o' +.s --ac :rocedure 1 improves the lower bound on v(TSP) by - i.e., at

:he end of procedure 1 the lower bound is

3 = v(A ,  
-t,I- it
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One can show that bounding procedure 1 generates at most (h-l)(h+2)/2

cutsets, where h is the number of subtours in x (see Exercise 6). The computa-

tional effort required to find a cutset satisfying (43) or showing that none

exists is O(niAj).

Example 2.

Consider the 8-city TSP whose cost matrix is shown in Table 1.

Table I

1 2 3 4 5 6 7 8

X x 2 11 10 8 7 6 5

2 6 x 1 8 8 4 6 7

3 5 12 x 11 8 12 3 11

4 11 9 10 x 1 9 8 10

5 11 11 9 4 x 2 10 9

6 12 8 5 2 11 x 11 9

7 10 11 12 10 9 12 x 3

8 7 10 10 10 6 3 1 x

Table 2 shows the optimal solution x to AP (x j = 1 for (i,j) boxed in,

x i = 0 otherwise), the optimal solution (u,v) to the dual of AP (the numbers

on the rim), and the reduced costs ci.j The solution value is 17. The correspon-

ding admissible graph G is shown in Fig. 3.0I
Bounding procedure 1. Cutset K1 = ((i, 2, 3, 7, 8), 4, 5, 6)) admits

I = c8,6 = 2, and cutset K2 = ((4, 5, 6), (1, 2, 3, 7, 8) admits = 6,3 = 3.

The lower bound becomes 17 + 2 + 3 - 22. The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph G in Fig. 4. Note that G

0 0

of Fig. 4 is strongly connectedJl
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Table 2

1 2 3 4 5 6 7 8

I x [ 9 8 6 5 4 3 2

2 3 x [ 7 7 3 5 6 1

3 [] 9 x 8 5 9 0 8 3

4 8 8 9 x [ 8 7 9 1

5 7 9 7 2 x [ 8 7 2

6 8 6 3 [] 9 x 9 7 2

7 5 8 9 7 6 9 x [ 3

8 4 9 9 9 5 2 [ x 1

2 0 0 0 0 0 0 0

3 6

5

Fig. 3. Graph G defined by the AP solution0
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Table 3

1 2 3 4 5 6 7 8

I x 9 6 4 3 4 3

*2 3 x 70 5 5 1 5 6

3 17 9 % 6 3 7 0 s

4 5 5 6 x 8 4 6

5 4 6 4 2 x CO 5 4

6 5 3 0 9 x 6 4

7 5 8 9 5 4 7 x E

8 4 9 9 7 3 0

7)8

3 6

2,

Fig. 4. Grapin G 0after bounding procedure I
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3iundin2 orocedure 2

:his procedure uses the inequalities (3) _ha. satisfy conditions (i) and

ii), i.e. are violated by x and admit a positive multiplier. To write these

inequalities in the general form (37), we restate them as

> I - !Stj t E T2
iES tjES t

2

The subtour elimination inequalities (3) (or (44)) are known to be

equivalent to (5) (or (42)). Nevertheless, an inequality (44) may admit a

positive multiplier when the corresponding inequality does not, and vice

versa.

if Si ,.., Sh  are the node sets of the h subcours of _, every in-

equality (g4) defined by St, t=l,...,h, is violated by R; but a positive

multiplier t can be applied without violating the condition that RE. = I

implies c>i = 0, only by changing the values of some u. and v. , and this

in turn can only be done if a certain condition is satisfied. Roughly speaking,

we have to find a set of rows I and columns J such that, by adding to each ui, iZI

and vj, jEJ the same amount -t > 0 that is being added to cij, (i,j)E(St , St),

we obtain a new set of reduced costs cij such that c 0 for all (ij), and
ijii

0 for all those (i,j) such that x = I. The condition for this is best
ij ij

expressed in terms of the assignment tableau of the Hungarian algorithm whose

rows and columns are called lines, and whose row/column intersections are called

cells. Cells correspond to arcs of G and are denoted the same way.

Let St be the node set of a subtour of R, and

= "(i,. A " "S A, = (ij)EiAk
t0 t t t' ij
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Theorem 2 (3alas and ChriScofides [1981]). Inequality admi:s a

-.isi--ie Lui'iplier if and only if chere exists a set C : f lines such zha:

Qy) every (i,j)-A is covered by exactly one line in Ct

() every (ij)A A is covered by at most one line in C
t t

(y) no (ij)EA 0'A is covered by any line in C

If such a set C exists, and it consists of row set I and column set J,

then the maximum applicable multiplier is

m an C.£ (ij).M z

-.€here

, - 5 ,,, .) £V

7 
t

Proof. Sufficiency. Suppose line set C, consisting of row set I and

column set 7, satisfies (&, (s), (v>. Then adding , > 0 to c.- for all

(i,2' -,, S t), as well as to all ui, iEI and v., j J, produces a set of reduced

c . s 0 for (i,j)EA!, since C = i -J satisfies (a. Further,coscs such that c. i 0 t

since C satisfies ( =) and o), cf c = 0 for all (ij)EA A' and c.'. c. = 0sine Csaisfes =_ an (7, ij t t' ij ij

for all (i,j)A A t . The only reduced costs that are diminished as a result

of the above changes, are those corresponding to arcs in one of the three sets

(I,J' , (I,VS C), (VS t, J) whose union is the set M of the theorem. Hence

setting equal to the minimum reduced cost over M provides a positive multiplier

that can be aoplied to the arcs in (S St

Necessitv. Suppose a multiplier - > 0 can be applied to the arc set (S , S
t t

:n order to orevent the ci. for (i,j)-A from becoming positive, one must increase

.... '::" r al l A ""-' If this can be done, it can be done b addin'g
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to u. or v. (but not to both) for (i,j)EA'; and the corresponding index sets I
1 J t

and J form a set C = I' J that satisfies (0). Let C be the collection of all

sets C obtained in this way. Now take any CEC. If C violates ( then

c.. .. .-. .. = 0 for some (i,j)At A', and if it violates (*j), then

c. < c = 0 for some (i,j)EA0 At" Since by assumption > 0 can be applied

to (St , S ), there exists at least one set CCC that satisfies both ( ) and (').

To check whether for a given subtour-node-set S there exists a set of

lines C satisfying conditions (CI), (s), (v), we proceed as follows.

First we construct a set R" of rows that cannot belong to C, and a set K+

of columns that must belong to C, if conditions , (a), ('i are to be satisfied.

To do this, we start with K+ = 0 and in view of ('y), put into R- all rows i for

which there exists a cell (ij) A with jCV.S Then we apply recursively the
0 t'

following two steps, until no more additions can be made to either set:

If a row i was put into R-, then to satisfy (a) we put into K+ every column

j such that (i,j)EA/.
t+

If a column j was put into K+ , then to satisfy ($) we put into R every

row h such that (h,j)-A t

To state the procedure formally, we set K+ = 0,

R- = £iEStIl(i,j)-EA with jEV S ),

and define recursive)v for r = I,... ,

K+  K+  L j (i,j)A' with iER ]
r r-I t t r-I

Rr Rr I  St(i,j)A t with r

Here r is the smallest r for which K = K or R Rr rl r r-l"
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Next we use a perfectly analogous procedure to construct a set R+ of rows

that must belong to C and a set K of columns that cannot belong to C, if (:k,

(- ('.) are to hold. In other words, we set R 0,
0

K = jES --(i,j)zA with iZV S b
o t o t

and define recursively for s = 1,...,s,

, i (ij)EA with j'K }
Ss-i t t s-1

K- = K s j I (i,j)A with iER-1
s s-l1 t t s

Here s = mins, s,,, where s1 is the smallest s such that R- R 1 or

- 4.
Ks = K and s, is the smallest s such that R+ R-! r or K K-r 0.

s s-i' S r s r

If s s,, then some row or some column that cannot belong to C, must belong

to C for (9, (i), () to hold; hence there exists no set C of lines satisfying

(9, ( -), ( ), a no positive multiplier can be aoplied to the inequalitv (14),

corresponding to St.

If s = sl then the set of lines C = I'-J, where I = St R- and J = K

satisfies conditions (a), (c), ('"). Thus we include the inequality (44) corre-

sponding to S into L(w) with the multiplier t 0 defined in Theorem 2, and
tt

set the reduced costs to cij - cij - t' (i,j)-M, c '- cij otherwise. (Here

M is the set defined in Theorem 2.)

In both cases, we then choose another subtour, until all subtours have been

examined. If h is again the number of subtours, bounding procedure 2 requires

O(h. !A, steps. It can be shown (see Exercise 7) that this procedure improves

the lower bound on v(TSP) by Z i.e., at the end of procedure 2 the lower

bound is

3, = v(AP) t
t-TI  t-T

" t-: I- - t -' . .. I -
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Examole 2 (continued).

Bounding procedure 2. The subtours of x are (1, 2, 3), (4, 5, 6) and

(.7, S)(see Table 3 and Fig. 4).

For S 1, , 3, R- = "31, K+ = >l" K" = *3}, R = Thus C = I J,
0 0

where I = I, 2j, J = £1 , and = c2 ,6 =1. For S9_ = $4, 5, 6,, R- = 6",

K I  ;4j; K- = 6, = £5}, and C = IlJ, with I = $4, 5j, J = 4', and

= . Finally, for S3 = t7, 8, RK = 7j; K = 7 and
+ K

since K - = 7 0, the inequality corresponding to subtour (7, 8) does not

admit a positive multiplier.

The lower bound becomes B, = B + + = 22 + 1 + 2 = 25. The new reduced

costs are shown in Table 4, and the corresponding admissible graph G in Fig. 5.,

Table 4

1 2 3 4 5 6 7 8

I x [] 9 3 3 2 3 2

2 2 x ] 2 4 0 4 5

3 [ 9 x 4 3 7 0 8

4 2 3 4 x [ 8 2 4

5 1 4 2 0 x [] 3 2

6 4 3 0 [] 9 x 6 4

7 4 8 9 3 4 7 x ID

8 3 9 9 5 3 0 ID x
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3 6

/ / 4

Fig. 5. Graph C 0 after bounding procedure 2

Bounding procedure 3

The class of inequalities used in this procedure is defined as follows.

Suppose G has an articulation point, i.e. a node k such that G - [kj has
0 0 ,

more than one component. Let one of the components have node set St. and denote

W = V\S rkI3. Then every tour contains an arc of at least one of the cutsets
II

K' = (StW ) and K' = (W ,S ), hence the incidence vector x of any tourt t t t t

satisfies the inequality

(45) x.>l1
(i,j)CKK '

t t

Furthermore, (45) satisfies condition (i), i.e. is violated by the AP solution.
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3ounding procedure 3 uses those inequalities (45) that also satisfy

condition (ii). Although every inequality (45) is the combination of some

inequalities (3) and equations (2) (see Exercise 8), nevertheless it is possible

to find inequalities (43) that satisfy condition (ii), i.e., admit a positive

multiplier, when no inequality (3) (i.e., (44'1) satisfies it. Indeed, it is not

hard to see, that if k is an articulation point of G and S is the node set of
o t,

one of the components of G - kJ, then K' A = Kl'  A = 0 and a positive0 t 0 t 0

multiplier given by

(46) min C..
_i t ot 1(i, j Ez'-'K

can be applied to the arc set K' .Kf . On the other hand, if G has no articula-
t t 0

tion point, then for any choice of the node k, the minimum in (46) is 0 and thus

no inequality (45) admits a positive multiplier.

Thus bounding procedure 3 checks for every iEV whether it is an articulation

point, and if so, it takes the corresponding inequality (45) into L(w) with the

multiplier %) given by (46). This is done by setting cij - cij - ' t (i,j) K' UK"t t t

cj - Cij otherwise. Since G0 has n nodes, and testing for connectivity requires

O(IAJ) steps, bounding procedure 3 requires O(n Aj) steps.

In view of (41) and the fact that (45) has a righthand side of I, at the end

of bounding procedure 3 one has the following lower bound on v(TSP):

B, = v(AP) + -X E " + E Vt.

t-T1  t T2  t T3 t

Example 2 (continued).

Vertex 6 is an articulation point of C (see Fig. 5). The corresponding

cutsets are KI  5 ( 5, 2, 3, 7, 8') and K1 = (p1, 2, 3, 7, 8}, ;4, 5'),

Ma
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and the arc set K' K admits the multiplier c 1 There is no other

articulation point, and the procedure stops with the lower bound B = B
3

25 + I 26. The new reduced costs are shown in Table 5, and the corresponding

G in Fig. 6.
0

Table 5

1 2 3 4 5 6 7 8

1 9 2 2 2 3 2

2 2 x 17 1 3 0 4 5

3 9 x 3 2 7 0 8

4 1 2 3 x 8 1 3

5 0 3 1 0 x [] 2 1

6 4 3 0 [ 9 x 6 4

7 4 8 9 3 4 7 x

8 3 9 9 5 3 0 x

78

3

Fig. 6. Graph G after bounding procedure 3
0

o
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Additional 
bounding procedures

At the end of bounding procedure 3, G is st:rongly connected and wit-.
0

articulation points. At that stage an attempt is made to find a tour in G.O0

For that purpose a specialized ixplicit enumeration technique is applied,

with a cut-off rule. If a tour i is found whose incidence vector 3 satis-

fies with equality all those inequalities (37) such that wt > 0, then H is

optimal for the current subproblem (this follows from elementary Langrangean

theory).

Example 2 (continued). The following tour can be identified by inspection

in G of Fig. 6: H = 1, 2), (2, 3), (3, 7),(7, 8), (8, 6), (6, 4), (4, 5), (5, 1)}.
0

The value of H is 26, equal to L(w) = B3, the lower bound at the end of procedure 3.

The tour H contains exactly one arc of each cutset associated with a positive Xt,

namely arc (8, 6) of KI = (il, 2, 3, 7, 8), (4, 5, 6'), and arc (5, 1) of

K2 = (4, 5, 6), [1, 2, 3, 7, 81). Thus the incidence vector of H satisfies

with equality the two inequalities (42) corresponding to K1 and K2, as required.

Further, H contains exactly ISII - 1 = 2 arcs of the subtour with node set

SI = tl, 2, 3), namely, (1, 2) and (2, 3); and exactly $2- I = 2 arcs of the

subtour with node set S2 = 4, 5, 6), namely (6, 4) and (4, 5). Thus the

complementarity condition is also satisfied for the two inequalities (44)

corresponding to SI and S2. Finally, it contains exactly one arc of the set
2'l

K1 1 where K1'  (4, 5), (1, 2, 3, 7, 8 l), K" = ((1, 2, 3, 7, 8), (4, 5)),

namely (5, 1): so thn complementarity condition also holds for the inequality

(45) corresponding to K'K" . In conclusion, H is optimal.,'

If, after bounding procedure 3, a tour H is found such that violates this

complementarity condition for some t E T, then attempts are made to replace those



'e.ua _:ies t7, that are "out of kilter," i.e., for which :he complemencaritv

c.niic'n is -:iolaced, by "in kilter inequalities (of the same t-pe), i.e.

inecualities that are 7ight for x and thus admit oositive multipliers satisfying

the complementaritv. condition. These attempts consist of a sequence of three

additional bounding procedures, called 4, 5 and 6, one for each type of ineaualitv

(42), (44) and (45), respectively. Bounding procedure 4 takes in turn each in-

equality (42) which has a positive multiplier X't and yet is slack for i, and per-

forms an exhaustive search for other inequa1.ities of type (42) that could replace

the inequality in question (with new multipliers) and which are tight for x. If

the search is successful, the in kilter inequalities with their new multipliers

replace te ut of kilter inequality and one proceeds to the next out of kilter

inecualit7 of t-,oe (42). Procedures 5 and 6 perform the same function for out

of kilter inecualities of type (44) and (45), respectively. These procedures are

iescribed in detail in Balas and Christofides [19811. When procedures 4, 5 and

6 are not successful in replacing all out of kilter inequalities (and thus proving

H to be an optimal tour), they nevertheless strengthen the lower bound on v(TSP).

Each of the six bounding procedures is polynomially bounded. This (worst

case) bound is O(n 4) for procedure 1, O(n 3) for each of the other procedures.

The mean times are considerably shorter, and on the average procedure 2 (the

only one that changes the dual variables u,, vj) takes the longest. The

general algcrit1 n of course remains valid if any subset of the six bounding

procedures is used in place of the full set, but computational testing indi-

cates that using all 6 procedures is more efficient (i.e. results in smaller

search trees and shorter overall computing times) than using any proper subset.
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3ranchin2 rules and other features

3efore branching, all arcs (i,j) such that T. > U - L(w) are deleted

from G. This "reduction" has removed on a set of 120 randomly generated oroblems

(Balas and Christofides [1981]), on the average 96-97% of the arcs in problems

with up to 150 variables, and 98% in problems with 175-325 variables.

The AP relaxation with Lagrangean objective function can of course be used

with any of the branching rules BRl - BR5 described in the context of the A?

relaxation with objective function (1). Balas and Christofides [1981] use two

rules intermittently, namely BR3 (partitioning on the basis of a subtour elimi-

nation inequality (3)), and another rule based on a disjunction from a condi-

tional bound, introduced earlier in the context of set covering (Balas [19801).

This latter rule is motivated by the following considerations.

Let H be the current tour and its incidence matrix. Remove from L(w)

all those inequalities (37) that are slack while the associated multiplier is

positive. Let 8ij be the reduced costs, and L(w') the lower bound, resulting

from this removal.

Theorem 3. Let S;H, S =(i, i9 ) ... ,(i 0 , j )} be such that

p

(>T > u -

r=l r r

and let the arc sets Qr C-A, r = 1,...,p, satisfy

. c a < (i,j)EA

*r

-.hen every solution x to TSP such that cx <:U satisfies the disjunction

r

r=l =
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Proof. L(7) is the value of an optimal solution to the dual of the linear

program LP defined by (1), (2), x . 0, (i,j)EA, and those inequalities (37)

with a positive multiplier. Now let x be a feasible solution to LP that violates

(49). Then x satisfies

(50) x.. > I , r = l,...,p.
(i,j)Q "

Let LP+ be the linear program obtained by adding to LP the constraints (50).

From (48), if we assign the values c. . , r = 1,...,p to the dual variables

associated with the inequalities (50), we obtain a feasible solution to the dual

p
of LP+. But then the objective function value of this solution is L(w) + E r'

r=l ir r

and hence from (47)

p
cx -L () + Z c >U.

r=l r r

Thus every solution x to TSP such that cx < U satisfies (49).'I

The branching rule can now be stated as follows.

BR9. Choose a minimum-cardinality set SO-H, S = f(il, jl),....(i, j )f,
I ~p

satisfying (47). Next construct a pXIAJ 0-1 matrix D = (dlj) (where r is the

row index and (i,j) the column index), with as many l's in each column as possible,

subject to the condition (48) and (ir, j r)EQr, r = 1,...,p, where

Qr = [(ij)EAdir = l).

Generate the p new subproblems defined by the disjunction (49), where

th
the r- subproblem is given by

N

E k+ r  k U Qr

Ek~ ~r(71' r = I,..,p.

Ik+r =Ik

=Mma
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The branching rule SR9 is used intermitLently %with 3R3 because at different

nzdes the ranking of the ¢o rules (in terms of strength) may be different. -he

choice is based on certain indicators of relative strength.

As to subproblem selection, the Balas-Christofides algorithm uses a mixture

of depth first and breadth first: a successor of the current node is selected

whenever available; otherwise the algorithm chooses a node k that minimizes

the function

E(k) = (L (w), - v (AP) S(k - 1
s() -s(k '

where L(w)k is the value of L(w) at node k, v(AP) is the value of the initial AP,

while s(O) and s(k) are the number of subtours in the solutions to the initial

AP and the one at node k, respectively.

5. Other Relaxations

For the same reasons as in the case ot the AP relaxation with the original

objective function, the A? relaxation with the Lagrangean objective function is

inefficient (weak) in the case of the synmetric TSP. Limited computational

experience indicates that on the average the bound L(w) attains about 96%

of v(TSP), which compares un.favcrably with the bound obtained from the 1-tree

relaxation.

On the other hand, the main reason for the weak performance of AP-based

relaxations in the case of symmetric problems, namely the high frequency of

subtours of length 2 in the optimal AP solution, can be eliminated if AP is

r anlaced by the 2-matching problem in the undirected graph G - (V,-).
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- -mathin relaxation

7he problem of minimizing the function (6) subject to constraints (7) and

-9' is known in the literature as the 2-matching problem, and is obviously

a relaxation of the TSP. Bellmore and Malone (1971] have used it for the

syrmmetric TSP in a way that parallels their use of the AP-relaxation for the

asymmetric TSP. A 2-matching is either a tour or a collection of subtours,

and the branching rules BR2 - BR5 based on the subtour-elimination inequalities

(3) and (5) for the asymmetric TSP have their exact parallels in branching rules

based on the subtour elimination inequalities (8) and (10) for the symmetric !S?.

The objective function (6) 'an be replaced, just like in the case of the

A? relaxation, with a Lagrangean function using the inequalities (8) and/or

if0). The Lagrangean dual of the TSP formulated in this way is as hard to

solve exactly as in the asymmetric case, but it can be approximated by a pro-

cedure similar to the one used by Balas and Christofides [1981] with the

AP-relaxation. Further facet defining inequalities, beyond (8) and (10),
.1

based on the work of Grotschel and Padberg [1979], can be used to enrich the

set drawn upon in constructing the Lagrangean function.

Although the 2-matching problem is polynomially solvable (Edmonds 11965]),

the main impediment in the development of an efficient branch and bound proce-

dure based on the 2-matching relaxation has so far been the absence of a good

i-plementation of a weighted 2-matching algorithm. However, as this difficulty

is likely to be ivercome soon, the 2-matching relaxation with a Lagrangean

objective function will in all likelihood provide bounds for the symmetric TSP

c mnarable to those obtained from the 1-tree relaxation.

I I I l II I' - " - . ..... .
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he n-path relaxation

:he prcblem of minimi.ing (I) subject to the constraint that [he solution

% ie the incidence matrix of a directed n-path starting and ending at a fixed

node ': (where "path" is used in the sense of walk, i.e., with possible repeti-

tions of nodes, and n denotes the length of the path) is clearly a relaxation

of the TSP. An analogous relaxation of the symmetric TSP can be formulated in

terms of n-paths in the associated undirected graph. Furthermore, the constraints

(2) in the asymmetric case, or (7) in the symmetric case, can be used to replace

the objective function (1) or (6), respectively, by a Lagrangean function of the

same type as the one used with the l-arborescence and 1-tree relaxations. This

family' of relaxations of the TSP was introduced by Houck, Picard, Queyranne and

Vemuganti 7!9-7' :he (directed or undirected) n-path problems involved in this

relaxation can be solved by a dynamic prograrming recursion in O(n 3 ) steps.

Computational experience with this approach seems to indicate (Christofides [1979],

o. ilv", that the quality of the bound obtained is comparable to the one obtained from

the i-arborescence relaxation in the asymmetric case, but slightly weaker than

the bound obtained from the 1-tree relaxation in the syimmetric case. Since

solving the 1-tree and 1-arborescence problems is computationally cheaper than

solving the corresponding n-path problems, this latter relaxation seems to be

dominated (for the case of the "pure" TSP) by the 1-tree or 1-arborescence re-

laxazion. However, the n-path relaxation can easily acco-mnodate extra condi-

tions which the 1-tree and l-arborescence relaxations cannot, and which often

occur in problems closely related to the ISP (traveling salesman problems w.ith

s-ie zons:raints appear in vehicle routing (see Chapter 12 of this book' and

sher _ractical contexts.)

a'i
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substantial generalization of the n-oath reia:xation, due to Christo:ides,

...aoz-z_ a-d 7oth fig1 . and called stace-scace relaxation, has :he same

desirabLe characteristics of being able to easily accomnodate side constraints.

_h_ n . with cuttin; ilanes as a relaxation

Excellent computational results have been obtained recently by Crowder

and Padberg [1980] for the symmetric TSP by a cutting plane/branch and bound

approach. It applies the primal simplex method to the linear prooram defined

z( (6), (7), x. > 0, '-i,j, and an unspecified subset of che inequali:ies

defining the convex 'iull of incidence vectors of tours, Senerated as needed

to avoid fractional pivots. The procedure uses mostly inequalities of :he

form 4iD), but also other facet inducing inequalities from among chose intro-

duced by Grctschel and Padberg [1979]. When the search for the next inequalit-,

needed for an integer pivot fails, the procedure branches. Since the main

feature of this approach is the identification of appropriate inequalities to

be added to the linear program at each step, it is being reviewed in the

chapter on cutting plane methods.

6. Performance of State of the Art Computer Codes

In this section we review the performance of some state of the art branch

and bound codes for the TSP, by comparing and analyzing the computational results

reported by the authors of these codes.

:he asvo etric TS?

-he three fastest currently available computer codes for the asyrrne:ric 7S?

see7 b. those of 3alas and Christofides [1981], Carpaneto and Toth -IS80]

-An4 -i rin--asan and Thompson [1977], to be designated in the 4-llo' ;in by

3--. r2sec:ively. The rain zharacteristics of these codes are s-r. a-
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rized in Table 6. Table 7 describes the computational results reported by the

authors of the codes. Each of the codes was run on a set of (different) asvr'tnet-

t4c :SP's w¢hose costs were independently drawn from a uniform distribution of the

integers in the interval [1,1000]. The entries of the table represent averages

for 5 problems (SST), 20 problems (CT) and 10 problems ,'BC), respectively, in

each class. The number of nodes in the SST column is not strictly comparable

with that in the CT and BC columns, since it is based on counting only those

nodes that were selected for branching and processed. Also, the computing times

are not strictly comparable without a correction, since the CDC 7600 is about 3

times faster than the LUIVAt 1108 and the CDC 6600 (Computer Review, GMa Corp.,

Lexington, NA, 1979). The picture that emerges, however, by comparing the

figures within each column, for any of these three codes, is a pattern of growth

in computational effort with problem size, that seems rather modest for a problem

usually viewed as "notoriously intractable". We will discuss the functional

relationship between problem size and computational effort in some detail further

below.

For problems in the range 40 _ n O 180, the number of nodes generated by

the BC algorithm is considerably smaller than the corresponding numbers for the

other two algorithms, although CT uses a "breadth first" branching strategy, meant

to minimize the number of nodes generated, at the cost of increased storage

requirements. The reason for this is that the Lagrangean bounding function used

by BC changes the ranking of tours among the assignments, removing from considera-

tion many assigment problems whose value in terms of the original objective

function is higher than that of the optimal TSP, and which therefore must be

processed by the CT algorithm. On the other hand, in the range 200 n _ 240,

___444
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:ol .. Sumnarv dscription of three cedes for the as'.Setric IS?

SST I C3 BC

Relaxation AP with AP with AP with

7S? objective TS? objective Lagrangean

objective

Lower bounding .. AP', obtained (AP), obtained lower bound :n

by parametric by Hungarian Lagrangean,
sim-ple:x method, method post- obtained by

olos penalty optimizing approx-imation

-version) procedures

Sranching rule 3R3 BR3 3R3 - 3R9

Subproblem depth first breadth first depth first upon

selection forward step,

breadth first

upon backtracking

Upper bounding no special no soecial tour-finding

procedure procedure heuristic

: ariable fixing no 1no yes
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- . ComDucacional results on randomly generated asy .netrc 7S's

S1 A . : search -ree cmuin ime ,secncs

-~ __ __ ___ __ __ ___ BC(2) (31)'

-0 2627 2.9 0.9

50 11 12 1.7 - 0.2

60 39 24 - 9.3 2.2

70 32 - 8.5

75 - 4 2 - 0.3

80 32 42 13.8 6.6

9) 82 - 42.0 -

Ij0 87 56 39 53.0 l0.! 0.7

1l0 ' 22.3

6 61 62.9 16.2

72 43 ii

130 97- - 110.1 -

l-O 130 57 - 165.2 19.0 -

150 50 - 46 65.3 - 2.0

* 70 73 - 108.5 32.8 -

-J ~ 98- - '6.3~t

- - 58 - 4.2

132 1 215 69 - 441.4 29.2

2 , 58 63 - 35.7 6.i

220 - 43 - 46.7 -

--25 - - 84 - 10.4

- 63 53.4 -

- - 89 - 13.7

- - - 106 - 21.7

124 -38.A

_ 11 142 7- 9.7

.. . -res thaz were e."1ored; (2 total niumber of nodes; (3) UNTVAC 1108:

- .-- Th - , l L * JJ0



3C seems to generate more nodes than CT; the reason for this may: be that at

this noin: the advantage cf the "breadth first" stratev used tv C7 :utweizhs

that of the stronger bounding procedures used b BC. This seems to suggest that

an algorithm based on the Lagrangean bounding procedures Df BC, but using the

"breadth first" node selection strategy of CT, will generate fewer nodes :or

any problem size, than either the CT or the BC algorithms. This is undoubtedly

true, but notice that at the current state of the art, the limiting factor in

the use of both algorithms is not computing time (which has never exceeded 1.5

minutes for any problem), but (in core) storage space.

The fastest currencl' - available branch and bound codes for the symnezric SP

e- :,: be those of Smith and 7hompson [1977] and "olgenant and Jonker [!982i,

to be designated in the following by ST and 'J, respectively. Table 8 summa-

rizes their main characteristics, while Table 9 reports on their computational

perfo rmance.

Again, each cf the two codes was run on a set of (different) symmetric

TSP's whose costs were independently drawn from a uniform distribution of the

integers in the interval [1,10001. The entries of the table represent averages

for 15 problems (except for n=80, where the entry for SST is the average for

5 problems only). The CYBER 750 is about 3 times faster than the LM$IVAC 1108.

3oth codes were also tested on randomly generated symmetric Euclidean

SSP's, which required for each code a greater computational effort (e.g.. for

n = :0 -he average number of subgradient iterations was 3049 for ST and



-abe ~. urary descrio:ion of :wo codes for :he s'.Tnetric :Sp

Relaxation 1-tree with ' I-tree witha Lagrangean objective 
Lagrangean objective

Lower bounding subgradient subgradient

optimization optimization with

convex combination

of subgradients

3ranching rule 3R7 BR8

Suzbpr~a sclc:i-n I depth first deDth first

Upper bounding no special procedure no special procedure

Variable fixing no yes

Table 9. Computational resul:s on randomly generated syrmmetric TSP's

Nodes of the Subgradient Computing time

search tree iterations (seconds"

( 2i ST vj SV. 7 Vj(4 >

50 17 526 - 22.1

60 1.5 572 352 34.1 I 7

-o 19 7061.6 -

15 764, 702 33.0 1oo

- 1661 53.,

1:, ;ber or nodes that were explored: (Z'% not reported; ,3) ~ 1108;

.. ) Y3~750.
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Average performance as a function of problem size

TSP is well known to be NP-complete, hence in all likelihood there is no

polynomial time .SP algorithm, i.Q. no algorithm guaranteed to solve every instance

of TSP in a number of steps polynomial in n. However, this statement refers to

the worst case behavior of algorithms, and does not exclude the existence of

algorithms whose performance, though exponential in the worst case, is on the

average polynomial in n. To make the colloquial term "on the average" more

precise, assume the costs cij of TSP are random numbers drawn inde-

pendently from a uniform distribution over the unit interval. Whether the

expected time required to solve such a problem is an exponential or polynomial

function of n, is at present an open question, on which the opinion of experts

is divided (see, for instance, Bellmore and Malone [1971], and Lenstra and

Rinnooy Kan [19781).

While the theoretical issue remains unsolved, it is not irrelevant to

examine from this point of view the empirical performance of some of the more

efficient algorithms on randomly generated TSP's. In a recent study, Balas,

McGuire and Toth [1983] have fitted three different approximating curves to the

data of Table 7 for each of the three codes SST, CT and BC for the asyrmetric

TSP, in an attempt to determine which of the three types of functions describes

best the behavior of each algorithm. The data of Table 7 were corrected for the

difference in speed between the CDC 7600 and the other two computers by multiplying

by 3 the computing times reported for the Balas-Christofides code. The functions

examined were:

f(n) = an (polynomial),

f(n) = nlogn (superpolvnomial'

f(n'l = De (exponential),

where log stands for the natural logarithm and e for its base.
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Each of the three functions was expressed in logarithmic form, and a simple

regression of log f(n) was r.-i on log n (in the case of the polynomial function),

on log-n (in the case of the superpolynomial function), and on n (in case of

the exponential function), in order to find the best fitting values of a and

for each case. The outcome is shown in Tables 10, Il and 12.

Table 10. Statistical analysis of the Smith-Srinivasan-Thompson algorithm

50 < n < 180

Standard

Type of error of Coefficient of
function Best fit estimation determination

Polynomial 0.38 x 10- 5 X n 0.505 0.883

Superpolynomial, 0.105 x l0- X n0 377 1°gn 0.519 0.877

Exponential 1.19 x e0 0 3 26 n 0.595 0.838

Table 11. Statistical analysis of the Carpaneto-Toth algorithm

40 < n < 240

Standard
Type of error of Coefficient of
function Best fit estimation determination

- 2.2611

Polynomial 0.26 x 10' 3 x n 0.193 0.978

-1 0.2421ogn

Superpolynomial 0.47 x 10 x n 0.255 0.962

O.0l8 4 nExponential 1.05 x e 0.488 0.860
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Table 12. Statistical analysis of the Balas-Christofides algorithm

50 -n 325

Standard
Type of error of Coefficient of
function Best fit estimation determination

Polynomial 0.5 x 106 x n3 " 14  0.361 0.962

Superpolynomial 0.87 x 10- x n0 *32 0 1ogn 0.260 0.980

Exponential 0.85 x I0 - 1 x e0 .0 20 5n 0.199 0.989

These results suggest that in the limited range of n for which the

algorithms were tested (40-- n < 180 for SST, 40 < n < 240 for CT, and 50 _ n 321

for BC), their behavior can be almost equally well described by any of the three

types of functions considered. Although the rankings given by the coefficient of

determination seem to be polynomial/superpolvnomial/exponential for SST and CT,

versus exponential/superpolynomial/polynomial for BC, the differences between

the coefficients of determination for the three function types are too small in

comparison to the differences between the same coefficients for the different

algorithms, in order to attach much significance to these rankings. Further caution

and reservations are in order because of the considerable differences in the

range of n over which the three codes were tested.

In an attempt to obtain a more meaningful ranking of the three types of

approximation curves, the range of n for each of the three algorithms was then

broken up into two approximately equal parts, and the same three function types

were fitted separately to the data in the lower half and in the upper half of

the range of n. The results, shown in Tables 13, 14, 15, yield the same rankings
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Table 13. The Smith-Srinivasan-Thompson algorithm, with
splitting of the range of n

.--- ~Standard
Type of error of Coefficient of
function Best fit estimnation determination

50 <Cn _110

Polynomial 0.22 x 10- n 3.645 1 0.582 0.748

Superpolynomial 0.58 x 10~ X 0.4n 1g 0.599 0.732

Exponential 0.368 X e005f 0.664 0.672

120 -- n< 180

Polynomial 0.14 x 10 x n 2 4  0.5183 0.400

Superpolynomial 0.43 x 10- x n 037on055 .0

Exponential 4.48 x e 0.0 225 n 0.5041 0.432

Table 14. The Carpaneto-Toth algorithm, with

splitting of the range of n

Standard
IType of error of Coefficient of
function Best fit estimation determination

40- n <120

Polynomial 0.45 x 104  X n2 ~8  0.116 0.990

-1 0.3171ogn012098Superpolynomial 0.12 x 10- x n0.2098

Exponential 0.33 x e0.34027095

140 _n < 240 -
~Polynomial 0.22 x 10- 1 X n1.406 0.141 0.698

Superpolynomial 0.9 x n0  3lg 0.138 0.708

Exponential 9.0 >' e 0.03 0.128 0.749

ILa
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Table 15. The Balas-Christofides algorithm, with
splitting of the range of n

Standard
Type of error of Coefficient of
function Best fit estimation determination

50 < n < 175

-4 .407

Polynomial 0.14 x 10- X n 0.288 0.937

- 0.2671ognSuperpolynomial 0.74 x 10 x n 0.242 0.956

Exponential 0.54 x 101 x n0.0 245 n 0.120 0.989

200 < n 325

Polynomial 0.5 x 10- 1X n 0.100 0.984
0.5.3951ogn

Superpolynomial 0.1 X 10 - 3 x n 0 9 logn 0.095 0.986

0.0170n
Exponential 0.199 x e 0.087 0.988

as before for the lower half of the range of n, but almost completely reverse

the rankings for the upper half of the range: ignoring differences of less than

0.01 in the coefficient of determination, the exponential function ranks first

over this range for both the SST and CT algorithms, with the polynomial and

superpolynomial functions tied for second place; whereas for the BC algorithm,

all three functions are now tied. To the cautionary note voiced earlier, we

should now add the fact that the coefficient of determination for this range of

n (i.e., the upper half) is considerably weaker for SST (0.40-0.43) and CT (0.70-0.75)

than for the full range of n, while for BC it is about the same, i.e., rather

strong (0.98-0.99). The findings listed above are supported by additional statis-

tical evidence, for which, as well as for the methodological details of the

analysis, the reader is referred to Balas, McGuire and Toth [19831.

The conclusions that we draw from this statistical analysis are as follows.
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First, over the limited range of n for which data are available, the per-

formance of the three algorithms analyzed can be described almost equally well

by each of the three function types considered: polynomial, superpolynomial and

exponential. Second, while the best fitting polynomial functions are of a moderate

degree (ranging between 1.4 and 4.4), the best fitting exponential functions have

0.046 0.007
a base very close to I (ranging between e 1.079 and e 1.012). Note

that an exponential function of this type is very different from the function e n

While the value of the latter increases more than twice whenever the variable goes

from n to n 4- 1, the value of 1 .0 12 n increases only by 1.2 percent when the variable

goes from n to n + 1.
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EXTRCISES

1. Show that, if the relaxation R of TSP used in the branch and bound

procedure of section 1 (either version) has a finite solution set, and the

branching rule is such that at every node i at least one solution to the re-

laxed problem R. becomes infeasible for all the successor problems Ril,...,Riq ,

then the procedure is finite. For the rooted tree representation of the branch

and bound procedure discussed in section 1, what is the maximum depth of the

tree, i.e., the maximum length of a path joining any node to the root? Give

a bound on the number of nodes of the rooted tree.

2. Let x* = (x*.) be an optimal solution to the assignment problem AP,ii

and let AP 1 be the assignment problem obtained from AP by adding the constraint

x.. = 0 for some (io, j ) such that xt . = 1. Describe a version of the
oJ o  100

Hungarian method that starts with x* and finds an optimal solution to API in

O(n 2 ) steps. (Hint: show that only one labeling is required.)

3. Show that the "breadth first" rule of always choosing the node with

the best lower bound produces a search tree with a minimum number of nodes,

if (i) every node selection is uniquely determined, i.e., there are no ties

for the best lower bound; and (ii) the branching and bounding at any given

node is done only on the basis of information generated on the path from the

root of the tree to the given node. Construct examples to show that neither

(i) nor (ii) is sufficient by itself (Fox, Lenstra, Rinnooy Kan and Schrage

F19781). Assuming that conditions (i), (ii) are not satisfied, describe a

subproblem selection rule that combines some of the advantages of "breadth

first" with some of those of "depth first" (Forrest, Hirst and Tomlin [19741,

Balas [19751).
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k.
4. A subgradient of a convex function f(x) at x = x is a vector s

suc that

fI x 'l -
k  s (x - x )

kx

and the subdifferential of f(x) at xk is the set of all subgradients of
k

f(x) at x = x.

Let ; be the family of 1-trees in G = (V,E) introduced in section 3,

and let X(:) denote the set of incidence vectors of 1-trees. Show that, if

k kH(% ) is a 1-tree whose incidence vector x minimizes the function
k k(c.. + k + k)X..

iEVj >i 1 2. J 1

k kon X(,;), and d is the degree of node i in H(k ), then the n-vector whose
i

k k
components are d.-2 ieV, is a subgradient of L(X) at Idnifk h

1

subdifferential of L(X) at Xk.

5. Let Go = (V,A ) be the admissible graph defined in section 4 with

respect to (u, v, w), and let be the incidence vector of a tour H(x) in Go.
0

Show that H(x) is an optimal tour in G if x satisfies inequality (37) with

equality for all t'cT such that w > 0. Is this sufficient condition alsot

necessary? (h_-,t: use the optimality conditions for the linear program de-

fined by (1), (2), (37) and x ij 1 0, ' i,j, and its dual.)

6. Show that bounding procedure 1 of section 4 generates at most

(h-l)(h+2)/2 cutsets, where h is the number of subtours in the optimal solu-

tion x to AP. (Hint: use the following facts: (i) any node of a strongly

connected component, hence of a subtour, is reachable from any other node;

(ii) every directed cutset that is generated adds to A at least one new
0

arc joining some subtour to some other subtour; and (iii) when two subtours

are joined by arcs in both directions, they form a strongly connected component.)
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7. Show that, if B is the lower bound on v(TSP) obtained by bounding

procedure I, the lower bound generated by bo-inding procedure 2 is

B, =l B + 7'

(Hint: use the fact that if the cost of each arc in the set (S tS
t-TIt

is increased by 2' then the value of the solution x (hence of the solution

(u,v) to the dual of AP obtained at the end of procedure 2) is v(AP) + E isti- t '
t !T

8. Let k be an articulation point of the admissible graph Go, let St be

the node set of one of the components of G -kj, and consider the two directed

cutsets

K1 = Is t' V .S t 1k}}' Kt = V S t S ,t

Show that the inequality

x. >
(i,j)EK' K"

t~ t

is the sum of the inequality (5) for S = St ' k}, the inequality (3) for S = St,

and the equations (2) for all iES t and

9. Formulate the n-path relaxation of the TSP discussed in section 5 for

both the asymmetric and the symmetric cases, with a Lagrangean function involving

the equations (2) (in the asymmetric case) or (7) (in the symmetric case). Give

some examples of side constraints, i.e., extra conditions, that this relaxation

of TSP can accommodate but the 1-arborescence or 1-tree relaxations can not.

II
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computer codes. Besides material from the literature, the paper also includes
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for the purposes of this review.
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